Python для сложных задач. Наука о данных и машинное обучение

Обложка книги
Python для сложных задач. Наука о данных и машинное обучение

Данная книга — руководство по самым разным вычислительным и статистическим методам, без которых немыслима любая интенсивная обработка данных, научные исследования и передовые разработки. Читатели, уже имеющие опыт программирования и желающие эффективно использовать Python в сфере Data Science, найдут в этой книге ответы на всевозможные вопросы, например: как считать этот формат данных в скрипт? как преобразовать, очистить эти данные и манипулировать ими? как визуализировать данные такого типа? как при помощи этих данных разобраться в ситуации, получить ответы на вопросы, построить статистические модели или реализовать машинное обучение?

Для кого предназначена эта книга

«Как именно следует изучать Python?» — один из наиболее часто задаваемых автору вопросов на различных технологических конференциях и встречах. Задают его заинтересованные в технологиях студенты, разработчики или исследователи, часто уже со значительным опытом написания кода и использования вычислительного и цифрового инструментария. Большинству из них не нужен язык программирования Python в чистом виде, они хотели бы изучать его, чтобы применять в качестве инструмента для решения задач, требующих вычислений с обработкой больших объемов данных.

Эта книга не планировалась в качестве введения в язык Python или в программирование вообще. Предполагается, что читатель знаком с языком Python, включая описание функций, присваивание переменных, вызов методов объектов, управление потоком выполнения программы и решение других простейших задач. Она должна помочь пользователям языка Python научиться применять стек инструментов исследования данных языка Python — такие библиотеки, как IPython, NumPy, Pandas, Matplotlib, Scikit-Learn и соответствующие инструменты, — для эффективного хранения, манипуляции и понимания данных.

Общая структура книги

Каждая глава книги посвящена конкретному пакету или инструменту, составляющему существенную часть инструментария Python для исследования данных.

  • IPython и Jupyter (глава 1) — предоставляют вычислительную среду, в которой работают многие использующие Python исследователи данных.
  • NumPy (глава 2) — предоставляет объект ndarray для эффективного хранения и работы с плотными массивами данных в Python.
  • Pandas (глава 3) — предоставляет объект DataFrame для эффективного хранения и работы с поименованными/столбчатыми данными в Python.
  • Matplotlib (глава 4) — предоставляет возможности для разнообразной гибкой визуализации данных в Python.
  • Scikit-Learn (глава 5) — предоставляет эффективные реализации на Python большинства важных и широко известных алгоритмов машинного обучения.

Мир PyData гораздо шире представленных пакетов, и он растет день ото дня. С учетом этого я (автор) использую каждую возможность в книге, чтобы сослаться на другие интересные работы, проекты и пакеты, расширяющие пределы того, что можно сделать на языке Python. Тем не менее сегодня эти пять пакетов являются основополагающими для многого из того, что можно сделать в области применения языка программирования Python к исследованию данных. Я полагаю, что они будут сохранять свое значение и при росте окружающей их экосистемы.

Купить и скачать книгу на Озон

Добавить комментарий