Введение в статистическое обучение с примерами на языке R

Обложка книги
Введение в статистическое обучение с примерами на языке R

Книга представляет собой доступное изложенное введение в статистическое обучение

– незаменимый набор инструментов, позволяющих извлечь полезную информацию из больших и сложных наборов данных, которые начали возникать в последние 20 лет в таких областях, как биология, экономика, маркетинг, физика и др. В этой книге описаны одни из наиболее важных методов моделирования и прогнозирования, а также примеры их практического применения. Рассмотренные темы включают линейную регрессию, классификацию, создание повторных выборок, регуляризацию, деревья решений, машины опорных векторов, кластеризацию и др. Описание этих методов сопровождается многочисленными иллюстрациями и практическими примерами. Поскольку цель этого учебника заключается в продвижении методов статистического обучения среди практикующих академических исследователей и промышленных аналитиков, каждая глава включает примеры практической реализации соответствующих методов с помощью R – чрезвычайно популярной среды статистических вычислений с открытым кодом. Издание рассчитано на неспециалистов, которые хотели бы применять современные методы статистического обучения для анализа своих данных. Предполагается, что читатели ранее прослушали лишь курс по линейной регрессии и не обладают знаниями матричной алгебры.

Об авторе книги “Введение в статистическое обучение с примерами на языке R”

Гарет Джеймс занимает должность профессора статистики в университете Южной Калифорнии. Он является автором многочисленных методологических работ в области статистического обучения, посвященных анализу многомерных данных. Концепция настоящей книги во многом отражает содержание его курса по этой теме для студентов, обучающихся по специальности «магистр делового администрирования».

Даниэла Уиттон является специалистом в области биостатистики и занимает должность ассистента в университете Вашингтона. Ее исследовательская работа в основном посвящена применению методов машинного обучения для анализа многомерных данных. Благодаря ее вкладу, методы машинного обучения стали более широко применяться в геномных исследованиях.

Тревор Хасти и Роберт Тибширани являются профессорами статистики в Стэнфордском Университете, соавторами популярной книги «Элементы статистического обучения» и создателями обобщенных аддитивных моделей. Проф. Хасти внес также большой вклад в разработку статистического программного обеспечения на языках R и S-PLUS и создал методы «главных кривых» и «главных поверхностей». Проф. Тибширани предложил метод лассо и является одним из авторов популярной книги «Введение в бутстреп».

Достоинства книги “Введение в статистическое обучение с примерами на языке R”

Книга написана довольно ясным языком. Основные понятия объясняются, можно сказать, на пальцах. Много иллюстраций, помогающих лучше понять материал.

Комментарий
Я бы рекомендовала эту книгу для людей, которые хотят что-то понимать в математических основах машинного обучения, но эта книга не для математиков. Детальное описание математики есть в другой книге тех же авторов, но она пока есть, увы, только на английском вроде бы.

Приложения к книге “Введение в статистическое обучение с примерами на языке R”

Репозиторий содержит файлы скриптов на языке R и наборы данных, необходимые для выполнение лабораторных работ из книги “Джеймс Г., Уиттон Д., Хасти Т., Тибширани Р. Введение в статистическое обучение с примерами на языке R. Пер. с англ. С. Э. Мастицкого – М.: ДМК Пресс, 2016. – 449 с.: ил.” (оригинальное название “An Introduction to Statistical Learning with Applications in R”). Сам репозитарий находится тут.

Купить и скачать книгу на Ozon

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Общий рейтинг записи
Оцените запись:
[Всего: 0 Средняя оценка: 0]

Добавить комментарий

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: